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Two algorithms are described which allow the plotting of individual points on a root
locus diagram with or without time delay. The development was performed during the
design of a continuous phase shifter used in the Baseband Antenna Combiner for the
Deep Space Network (DSN). The algorithms, which are expected to be useful in similar
DSN efforts, are simple enough to be implemented on a programmable pocket calculator.
The coordinates of the open-loop zeros and poles, the gain constant K, and the time

delay T are the data inputs.

. Introduction

The root locus method (Ref.1) allows the designer to
obtain the poles of a closed-loop linear system when the
zeros and poles of the open loop are known. The equation
describing the root locus is
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I I (s-s)
i=z+1
where
5 = ot+jw
are zeros for 1 <i<z
s, = i
are polesfor z<i<z+p

T=0 is the time delay

K is a real parameter (usually a gain constant)
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There are basically three methods for plotting root loci by
digital computation:

(1) The s plane is scanned until points of the locus are
found with the desired accuracy (Ref. 2). This method
requires lots of computation and of memory.

(2) The plotting starts from a pole and advances along the
locus in fixed increments. If any parameter is modified,
the search has to start again because the locus changes
its shape (Refs. 3, 4).

(3) The plotting is performed by solving the polynomial:

Q()+KP(s) =0

This approach was implemented on a pocket calculator
(Ref. 5). It does not apply to systems with time delay and it
requires a preliminary expansion of the polynomial by hand or
with an additional program.

The root locus algorithms described here were developed
during the design of a continuous phase shifter used in the
Baseband Antenna Combiner of the DSN. The algorithms




should be helpful to engineers involved in the design of linear
feedback systems.

Il. Calculations

Using the complex Ln function we get from (1):
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which can be expanded to:
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{ 1 for zeros 1 <i<z

-1 forpoles z<i<z+p

Two real functions are defined, based on the real and the
imaginary parts of (3):
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A point on the root locus will satisfy the equations:
R(o,w) =0 and Q(o,w) =0 &)

Two different methods were used for solving Egs. (5):

The Newton-Raphson iteration (Ref, 6) starts from a point
of coordinates o and w and produces the correction terms
Ao and Aw from the following equations:

R(o,w)+R_Aoc+R _Aw =0 (6a)
g w

1}
o

0(0,w)+Q, Ao+ 0, Aw (6b)

Since R (0, w) and Q (0, w) are the real and imaginary parts
of the analytic function (2) they satisfy the Cauchy-Riemann
conditions

Q,= R, (72)
Q, =R, (75)

Substituting (7) in (6) and solving the system we get:

“-R*R +Q*R
Ao = z s (8a)
R? + R?
[ w
-R*R -Q-R
Aw = Zw 2 - (8b)
RtR
R_and R  are derived from (4a):
R =35, -T (92)
T g (e w)?
z+p W= W,
R = (9b)
o 0mg) (w- w)?
The coordinates of the new iteration aré:
o =og+Ac and o = wtAw (10)

The iteration process continues until:
Ad? + Aw? < P?
where P is the desired precision.
This algorithm converges very fast but it presents difficul-
ties when the starting(point is far from the solution because

it can diverge and give errors or jump to a solution on a branch
other than the one of interest.
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A gradient method (Ref. 7) was developed which does not
have the disadvantages of the previous algorithm but is slower
to converge. Consider the gradients of R (o, w) and Q (0, w):

grad R = uR_+vR (11a)

grad Q = uQ_ +vQ (11b)

u and v are unit vectors along the respective o and w axis.
Substituting (7) in (11b):

grad @ = -uR  +vR (12)

We notice that:

l[grad R| = |grad Q| (13a)

arg (grad Q) ~ arg (grad R) = % (13b)

Because the two gradients are orthogonal, moving along grad R
will produce a maximum rate of change for R and a zero rate
of change for Q and vice versa. In order to make R decrease
in absolute value at the fastest rate we have to move in the
direction pointed by the vector:

a=-Sgn(R)- gradR Sgn (R) = 1 for R=0

Sgn (R) = -1 for RO
Likewise for Q we have to move along:
b = -Sgn(Q) - grad Q

Therefore moving along the search vector ¢ = a + b will reduce
both R and @ in absolute value.

¢ = ~Sgn(R) - grad R - Sgn (Q) * grad Q (14)

Depending on the polarities of R and Q there are four possible
values for the angle 8 between ¢ and grad R (Fig. 1).

§ = arg(c) - arg(grad R) (15)
R>0 ;020 6 = -135°
R>0:;0<0 8 = 135°
(16)
R<0;0>0 g = -45°
R<0;0<0 6 = 45°
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We start from a point of coordinates o and w and we calculate
R, O, R, R, from (4a), (4b), (9a), (9b) respectively.

We find arg (grad R) from R and R, using the rectangular
to polar conversion. Knowing the polarities of R and Q we
find ¢ from table (16). We get the direction of search vector
¢ from (15):

arg (¢) = arg(grad R)+ 0

During one pass, the magnitude of the step is a constant D.
The recommended value for D during the first pass is a few
percent of full scale.

The search vector has the modulus D and the argument
arg (c). Using the polar to rectangular conversion we get the
coordinate corrections Ao and Acw. The search moves now to
a new point of coordinates:

o = o+ Ao W = wt Aw

The search pass will consist initially of steps moving at a
constant angle 0 relative to the local grad R. As soon as the
search crosses one of the curves R = 0 or Q = 0, it starts a
zigzag pattern along the crossed curve because of the change
in polarity of the corresponding function (Fig. 2). When the
search reaches the vicinity of the solution (R = 0; @ = 0) the
zigzag pattern is interrupted and a 180-deg change of direction
occurs.

There are only two possible cases as shown in Fig, 2. The
history of the last three steps is enough for detecting this
180-deg change in direction between the last step and any
of the previous two steps.

This part of the algorithm is implemented through the use
of a three-register stack into which the angles 8 are fed. After
each step we look for:

16, = Oy = 180° or

_ o
N 16, - Oy = 180

If the answer is true the step size D is reduced and the search
process continues with a new pass. The search ends when the

magnitude of the increment D becomes smaller than the re-
quired precision.

IIl. Conclusion

Both algorithms were implemented on a Casio FX-602P
programmable pocket calculator. The first program uses 36
memory registers and 281 program steps, while the second one
uses 41 memory registers and 351 program steps. They allow
the design of systems with up to eight singularities (z + p = 8).
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Fig. 1. Selection of search vector for the gradient method

Fig. 2. Gradient method search pattern — 180-deg change
of direction within the last three steps
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